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a b s t r a c t

In this paper, a numerical scheme based on a Gauss-like cubature formula from Sammariva
and Vianello (2007) [1] is introduced for approximate solution of integral equations over a
polygonal domain with a piecewise straight lines boundary in R2. The proposed technique
is a meshless like method with sufficient precision, which does not require any discretiza-
tion of the polygon domain or any preprocessing such as mesh refinement. The error anal-
ysis of the method is provided and some numerical experiments are also presented to
evaluate the performance of the proposed algorithm.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

We consider the Hammerstein integral equation of the second kind over a polygon domain X in plane R2 as the form

uðx; yÞ ¼ f ðx; yÞ þ
Z Z

X
kðx; y; s; tÞG s; t; uðs; tÞð Þdsdt; ð1:1Þ

where the continuous given functions f and k are defined respectively on R and R� R in which the rectangular region R
enclosing the polygon X.

Throughout the paper, we assume that the Eq. (1.1) is uniquely solvable with u as an unknown function which should be
determined and the function G satisfies in the following conditions:

(i) Gðs; t;uðs; tÞÞ 2 CðR� ð�1;1ÞÞ,
(ii) The partial derivative of G with respect to the variable u exists and satisfies in the Lipschitz condition

jGuðs; t;u1ðs; tÞÞ � Guðs; t;u2ðs; tÞÞj 6 cju1ðs; tÞ � u2ðs; tÞj:

Multivariate integral equations as (1.1) have many important applications in science and technology, e.g., the radiosity
equations which is a global illumination algorithm used in 3D computer graphics [2,3]. Another form of this equations
may arise in boundary integral equations in three dimensions which is defined on surface in space [4,5]. We refer the reader
for a brief bibliography of such applications to the survey [6].
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There are some theoretical and numerical studies on Fredholm integral equations of the second kind (1.1). Most of the
numerical methods are described by subdividing the domain X into triangular or quadrilateral elements, and then exerting
a discretization based on approximation of unknown function by a piecewise polynomial over segments of the surface or
applying a cubature over each element and finally summing up the values obtained and achieving the function values in no-
dal points. Generally, this discretization leads to very large linear systems which increases the complexity of the problem
(see e.g., [4]).

On the other hand, a variety of numerical schemes based on the choice of cubature and subdivision type have been
proposed by several authors [4,7,5,8,16]. Generally, triangulations and quadrangulations are from extensive subdivisions
which may be used in adaptive algorithms. Thus, there are two problems to consider in approximating the integral in
(1.1), one is choice of a suitable cubature, and the other is the selection of a domain subdivision technique which is a
major difficulty. Using methods that do not require subdivision of the polygon domain can eliminate the second
problem.

In recent years, meshless like methods have gained the attention of many researchers. A number of cubature formulas
for a variety of regions that do not require a subdivision of the integration domain have been given in [9,10,1]. Sommariva
and Vianello in [9], have been solved the problem for polygons by resorting to Radial Basis Functions (RBF) interpolation in
connection with Green’s integral formula, and then the method has been extended to meshless cubature from scattered
data over the disk in [10]. Recently, they have introduced a completely different approach, in the special case of cubatures
over polygons, which is a Gauss-like numerical integration with the Green’s formula together the univariate Gauss–Legen-
dre discretization [1]. This cubature formula dose not require subdivision and it only needs the polygon boundary in the
form of a counterclockwise sequence of vertices. The formula is exact for at most 2n� 1 degree polynomials with n arbi-
trary over convex, nonconvex, or even multiply connected polygons. Most recently, Li and Dagnino in [11] have con-
structed an adaptive numerical integration algorithm for polygons by cubatures based on quadrilateral elements and
compared their results with those obtained by cubatures based on triangulation and Gauss-like method. The results dem-
onstrate that for smooth functions, the errors for Gauss-like cubature are better than those by adaptive algorithms and
equal subdivision methods. However, as the Gauss-like cubature nodes fall outside the non-convex test domain, therefore
the integrand function has to be computed also in the rectangular domain containing the polygon, as mentioned in Re-
mark 4 of [1].

The main aim of this paper is to construct a Nystrom type method based on this new Gauss-like cubature for approximate
solution of the Hammerstein integral equations over a polygon in N � mn2 nodes, with m being the number of sides of the
polygon that is not orthogonal to a given line, and not lying on it. In general, these nodes spread over into the smallest rect-
angular regions included in the polygon. It is notable that under the present conditions, specially for polygons which one of
the sides located on x-axes, the discretization nodes fall inside the polygon. However, in the presented test problems, we
have considered the polygons with different points distribution whose nodes may be placed inside or outside the integration
region.

The paper is organized as follows: a Nystrom type method based on Gauss-like cubature [1] for solving the Hammerstein
integral equations over a polygon is introduced in Section 2. Section 3, contains an error analysis of the proposed procedure
and finally in Section 4, the numerical treatments of several test problems of linear and nonlinear integral equations over
some polygons with different points distribution are reported in order to efficiency and effectiveness of the method.

2. The proposed method based on Gauss-like cubature

The integral Eq. (1.1), may be written in the following abstract form:

u� KGu ¼ f ; ð2:1Þ

where K can be considered as a nonlinear integral operator:

ðKGuÞðx; yÞ ¼
Z Z

X
kðx; y; s; tÞG s; t;uðs; tÞð Þdsdt; ðx; yÞ 2 R; u 2 CðRÞ:

Generally, the computational issues of this class of nonlinear integral equations have two major aspects. Discretization of
the Eq. (2.1) by replacing it with a sequence of finite dimensional approximating problem as

un � KnGun ¼ f ; n!1 ð2:2Þ

and then solving the resulting finite system of equations for deriving the approximate solutions of (1.1), in nodal points.
For describing the key idea, we state the following lemma from [1] which is the basis of the proposed method:

Lemma 1 (From [1]). Let X be the closure of a bounded and simply connected polygon with boundary described counterclockwise
by the sequence of vertices

v i ¼ ðai;biÞ; i ¼ 1; . . . ; l; l P 3

and suppose f 2 CðRÞ and let a be fixed, where
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X # R ¼ ½a; b� � ½c;d�; a 2 ½a; b�:

Then, the following cubature formula is exact over X for all bivariate polynomials of degree at most 2n� 1,

I2n�1ðf Þ ¼
X

i2IX;a

Xni

j¼1

Xn

k¼1

wijkf ðnijk;gijÞ;

where

IX;a ¼ i : Dbi – 0f g \ i : ai – a or aiþ1 – af g

and

ni ¼
n; Dai ¼ 0;
nþ 1; Dai – 0:

�

The nodes are given by

nijk ¼
xiðs

ni
j
Þ�a

2 sn
k þ

xiðs
ni
j
Þþa

2 ;

gij ¼ yiðs
ni
j Þ;

8<
: ð2:3Þ

in which

xiðtÞ ¼
Dai

2
t þ ai þ aiþ1

2
; yiðtÞ ¼

Dbi

2
t þ bi þ biþ1

2

and the weights are obtained as

wijk ¼
1
4

Dbiðxiðsni
j Þ � aÞkni

j kn
k ; ð2:4Þ

where fss
jg and fks

jg for 1 6 j 6 s be respectively, the nodes and the weights of the univariate Gauss–Legendre quadrature formula
of degree of exactness 2s� 1 on ½�1;1� and D denoting the forward difference operator.

In order to approximate the solution of (1.1), we construct a Nystrom type method. To do so, we discretize the
integral that appears in the equation by the relation based on the Gauss-like cubature rule of degree of exactness
2n� 1:

unðx; yÞ ¼ f ðx; yÞ þ
X

i2IX;a

Xni

j¼1

Xn

k¼1

wijkkðx; y; nijk;gijÞG nijk;gij;unðnijk;gijÞ
� �

; ð2:5Þ

in which un is the new unknown solution and the approximate operator Kn is defined by:

ðKnGðuÞÞðx; yÞ ¼
X

i2IX;a

Xni

j¼1

Xn

k¼1

wijkkðx; y; nijk;gijÞG nijk;gij;uðnijk;gijÞ
� �

:

For the practical purpose of solving (2.5), it is important to note that this relation is equivalent to solvability of the finite
system

uvwz ¼ f ðnvwz;gvwÞ þ
X

i2IX;a

Xni

j¼1

Xn

k¼1

wijkkðnvwz;gvw; nijk;gijÞGðnijk;gij;uijkÞ ð2:6Þ

for the unknowns uvwz for v 2 IX;a where w ¼ 1; . . . ;nv ; z ¼ 1; . . . ;n. There is a simple one-to-one correspondence between
the solutions of (2.5) and (2.6) in which

unðnvwz;gvwÞ ¼ uvwz

for v 2 IX;a;w ¼ 1; . . . ;nv ; z ¼ 1; . . . ;n. (See e.g., [4] for more details).
Finally, in order to obtain the approximate solution of (1.1) in N � mn2 nodes, where m is the number of sides which is

equal to cardinal of IX;a, we end up the nonlinear system (2.6) with N equations. Availability of many well established iter-
ative type methods for solving the nonlinear system such as Newton’s method is a pronounced feature of the proposed meth-
od which obtains the unknown values.

We can summarize the proposed numerical algorithm over a polygon X with the vertices ðai; biÞ for i ¼ 1; . . . ; l, as follows:
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The Algorithm

Step 1. Specify the parameters n;m and a. The integer n indicates that the exactness of the Gauss-like cubature will be
2n� 1 and m being a number of sides of the polygon which are not orthogonal to the line x ¼ a and not lying on it,
where a is a fixed number belonging to the x coordinate including one from the edges of the polygon.

Step 2. Calculate the nodes ðnijk;gijÞ and the weights wijk for i 2 IX;a; j ¼ 1; . . . ;ni; k ¼ 1; . . . ;n, respectively, by the
relations (2.3) and (2.4).

Step 3. Constitute the system of equations with the unknowns un based on relation (2.5).
Step 4. Solve the nonlinear system (2.6) for the variables uvwz, for v 2 IX;a; w ¼ 1; . . . ;nv ; z ¼ 1; . . . ;n, which is

equivalent to the approximate solution of the undetermined function uðx; yÞ at the nodal points.

3. Error analysis

Our analysis in this section rely on the framework developed in [12] for the projection methods.
For start, let us set Tu � KGuþ f , and Tnun � KnGun þ f , so the compact form of (2.1) and (2.2) is as follows, respectively:

u� Tu ¼ 0 ð3:1Þ

and

un � Tnun ¼ 0: ð3:2Þ

Assume that (3.1) has a solution u0 2 D, where D is a subset of a Banach space X and T is a compact nonlinear operator
from a domain D into X with continuous first derivative and second derivative bounded over
Bðu0; rÞ ¼ fu : ku� u0k 6 r; r > 0g.

Following [13,17], let us suppose that the following assumptions are satisfied on the operator Tn:

(1) fTng;n P 1 is a collectively compact family on D.
(2) Tnu! Tu, as n!1;8u 2 D.
(3) fTng;n P 1, possess continuous first and bounded second derivatives on Bðu0; rÞ.

To prove the unique solvability of the Eq. (3.2) in a neighborhood of an isolated solution u0 of the Eq. (3.1), we need the
invertibility of the linear operator ½I � T 0nðu0Þ�which has been investigated in the following Lemma from [13]. Noting that the
prime notation denotes the Frèchet derivative, while the linear integral operator T 0ðuÞ is defined by

ðT 0ðuÞzÞðx; yÞ ¼
Z Z

X
kðx; y; s; tÞ @

@u
G s; t;uðs; tÞð Þzðs; tÞdsdt:

Lemma 2 (From [13]). Assume that ½I � T 0ðu0Þ� is nonsingular and the hypotheses (1)-(3) hold. Then the linear operator
½I � T 0nðu0Þ� is nonsingular for sufficiently large n, say n P n1, and

k½I � T 0nðu0Þ��1k 6 b <1; n P n1:

Now, using Theorem 3 in [14] that describes the conditions that are necessary to approximate solution of a class of non-
linear operator equations, we give the following main theorem together a bound for estimating the errors associated to n.
Although, the presented proof follows very closely that of results of [12], we used the strategy related to the convergence
verification of the solution (3.2) to the unique solution of (3.1) based on a general cubature formula for the projection meth-
ods as in Kaneko et al. in [12].

Theorem 1. Let u0 2 D be an isolated solution of (3.1) and kKnk 6 k, where k is a constant positive. Then Eq. (3.2) has a unique
solution un in ku� u0k 6 d for some d > 0 and for sufficiently large n. Moreover, there is a constant Q ; 0 < Q < 1 such that

sup
ku�u0k6d

kðI � T 0nðu0ÞÞ�1ðT 0nðuÞ � T 0nðu0ÞÞk 6 Q

and

kun � u0k 6
Q

kcdð1� QÞ kTnðu0Þ � Tðu0Þk 6
QkGðu0Þk
kcdð1� QÞ kKn � Kk:

N. Masoudipour, M. Hadizadeh / Applied Mathematical Modelling 37 (2013) 9562–9574 9565



Author's personal copy

Proof. For ku� u0k 6 d and n P n1, we have

kT 0nðuÞ � T 0nðu0Þk ¼ kðKnGÞ0ðuÞ � ðKnGÞ0ðu0Þk ¼ kKnG0ðuÞ � KnG0ðu0Þk 6 kKnkkGuðuÞ � Guðu0Þk 6 kcku� u0k
6 kcd: ð3:3Þ

From (3.3) we conclude:

kðI � T 0nðu0ÞÞ�1ðT 0nðuÞ � T 0nðu0ÞÞk 6 kðI � T 0nðu0ÞÞ�1kkcd:

Let us set:

Q � kcdkðI � T 0nðu0ÞÞ�1k;

here, we take d so small, such that 0 < Q < 1.
Now, the condition (2) of the mentioned hypothesis yields:

9n2 : 8� > 0; n P n2; kTnðu0Þ � Tðu0Þk < �:

Considering the Lemma 2, we can define an as follows:

an � kðI � T 0nðu0ÞÞ�1ðTnðu0Þ � Tðu0ÞÞk 6 dð1� QÞ;

hence, if we consider n P maxfn1;n2g, then using the Theorem 3 in [14] we conclude that (3.2) has a unique solution in
ku� u0k 6 d, and the following inequality holds

an

1þ Q
6 kun � u0k 6

an

1� Q

and finally

kun � u0k 6
an

1� Q
¼ ðI � T 0nðu0ÞÞ�1ðTnðu0Þ � Tðu0ÞÞ

1� Q

�����
�����

6
Q

kcdð1� QÞ kTnðu0Þ � Tðu0Þk

6
QkGðu0Þk
kcdð1� QÞ kKn � Kk:

This completes the proof. h

4. Numerical illustrations and some experimental comments

In this section, we present some numerical examples for different polygonal domains and nonlinearities to clarify the
accuracy of the proposed method. All the procedures contain the known parameters m;a and n, the vertices of polygon,
the nodes and the weights of the univariate Gauss–Legendre quadratures over [-1,1].

It should be noted that if a is a fixed number belonging to the x-coordinate including one of the edges of the polygon, the
discretization nodes fall inside the polygon. On the other hand, if a is chosen such that it lies in the x-coordinate interval of
the rectangle region enclosing polygon, then some of the nodes may be fall outside the polygon. Therefore the integrand
function has to be computed also in the rectangular domain containing the polygon. Our numerical results demonstrate that
the variation of a in ½a; b� does not much affect on the final solution, experimentally. However, the determination of an opti-
mal a may be interest as a new research topic.

Table 1
Numerical results of Example 1 for different values of n and a with m ¼ 4.

n Nodes Maximal error

a ¼ 0:27 a ¼ 0:45 a ¼ 0:7

2 24 1:0000� 10�30 1:0000� 10�30 1:0000� 10�30

3 48 4:9165� 10�15 5:0577� 10�15 5:1805� 10�15

4 80 7:3474� 10�17 7:4724� 10�17 7:5812� 10�17

5 120 7:3079� 10�17 7:3902� 10�17 7:4618� 10�17

6 168 7:6857� 10�17 7:7473� 10�17 7:8009� 10�17

7 224 7:7652� 10�17 7:8118� 10�17 7:8552� 10�17

8 288 3:0959� 10�16 3:1103� 10�16 3:1228� 10�16

9 360 1:5190� 10�16 – –

9566 N. Masoudipour, M. Hadizadeh / Applied Mathematical Modelling 37 (2013) 9562–9574
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Table 2
A comparison between the proposed algorithm and the numerical results of [15] for Example 2.

The proposed algorithm Method in [15]

Nodes Maximal error Nodes Maximal error

8 1:7527� 10�3 4 6:124� 10�2

18 8:5358� 10�5 9 2:103� 10�2

50 1:2680� 10�7 25 5:930� 10�3

98 1:5442� 10�10 81 1:535� 10�3

Table 3
Numerical results of Example 3 for different values of n and a with m ¼ 2.

n Nodes Maximal error

a ¼ 0:05 a ¼ 0:1 a ¼ 0:15

2 8 2:2082� 10�10 4:9323� 10�11 1:5270� 10�10

3 18 1:0540� 10�13 1:0153� 10�14 6:8218� 10�14

4 32 2:5420� 10�17 1:2200� 10�18 1:6060� 10�17

5 50 4:4645� 10�21 8:8553� 10�22 3:1018� 10�21

6 72 6:3278� 10�23 2:6294� 10�23 3:9919� 10�23

7 98 8:9730� 10�22 8:4254� 10�22 8:6931� 10�22

Table 4
Numerical results of Example 4 for different values of n and a with m ¼ 2.

n Nodes Maximal error

a ¼ 0:0001 a ¼ 0:1 a ¼ 0:18

2 8 1:8382� 10�6 4:1396� 10�8 3:2427� 10�7

3 18 5:5528� 10�10 3:4380� 10�12 8:9580� 10�11

4 32 7:4767� 10�14 2:2984� 10�16 1:0135� 10�14

5 50 4:9496� 10�17 1:8681� 10�17 1:7496� 10�17

6 72 7:6546� 10�19 9:0600� 10�20 2:2380� 10�19

7 98 4:6017� 10�17 2:0901� 10�17 1:9090� 10�17

Table 5
Numerical results of Example 5 for different values of n and a with m ¼ 2.

n Nodes Maximal error

a ¼ 0:2 a ¼ 0:4 a ¼ 1

2 12 1:0000� 10�30 1:0000� 10�30 1:0000 � 10�30

3 24 1:0530� 10�13 1:1123� 10�13 1:0792� 10�13

4 40 1:1662� 10�16 1:2065� 10�16 1:1834� 10�16

5 60 7:8162� 10�17 7:9991� 10�17 7:8927� 10�17

6 84 1:3882� 10�16 1:4117� 10�16 1:3980� 10�16

Table 6
Numerical results of Example 6 for different values of n with a ¼ 0:4 and m ¼ 6.

n Nodes Maximal error

2 36 1:0000 � 10�30

3 72 4:8810� 10�15

4 120 1:5225� 10�14

5 180 9:5692� 10�17

6 252 9:9230� 10�17

7 336 9:1030� 10�17
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The maximum absolute errors between the obtained approximate solutions and the exact solutions for nodal points in
the relation (2.5), for different values of n and a have been tabulated in Tables 1–6. The parameter n shows that the accuracy
of the used cubature is 2n� 1, i.e., the cubature formula is exact over polygon for all bivariate polynomials of degree at most
2n� 1. We also compute the number of nodes using the values of n and m such that m is a cardinal of IX;a (according to the
Lemma 1). It is shown that the maximum absolute errors are completely dependent on the values of the parameter n.

Fig. 1. Nodes distribution for n ¼ 2;3;4;5;6 and 7 with a ¼ 0:27 in Example 1.
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Author's personal copy

The numerical experiments indicate that the proposed approach offers a highly accurate approximate solution of the inte-
gral equations over polygonal domains and does not require the grid generation. We emphasize that in most considered
cases, the small value of n (i.e., n ¼ 2) gives a desired accuracy of solutions at the first stage of the algorithm.

All the computations were supported by Maple
�
, meanwhile in the process of algorithm, the nonlinear system of equation

(2.6) can be solve by the FSOLVE command.

Example 1. Consider the following linear integral equation over a hexagon domain X

uðx; yÞ ¼ y2 � 23
192

xþ
Z Z

X
xsuðs; tÞdsdt;

with the exact solution uðx; yÞ ¼ y2. The coordinates of the six vertices are (0.25,0), (0.75,0), (1,0.5), (0.75,1), (0.25,1) and
(0,0.5).

The three values for a are chosen randomly from the interval (0.25,0.75) as a ¼ 0:27;0:45 and 0:7. Accordingly the
parameter m is fixed as m ¼ 4 and IX;a ¼ f1;3;4;6g based on the vertex ða1; b1Þ as ð0;0:5Þ, and the number of nodes is also
obtained based on 4nðnþ 1Þ, for every n.

Numerical results corresponding to different values of n and a are listed in Table 1. As can be seen, the error is
independent of the choice of the parameter a. For instance, in the case n ¼ 2, which generates 24 nodes, the maximum error
is quite low and the larger values of n gives a highly satisfactory results.

Fig. 1, exhibits the nodes distribution for different values of n in the case a ¼ 0:27. Here, the appropriate choice of a on the
lower side of the hexagon X, causes all the nodes are placed inside the region. In order to validate the error behavior of the
scheme, the graph of the absolute errors in this case is shown in Fig. 2.

Example 2 (From [15]).

uðx; yÞ ¼ 1

ð1þ xþ yÞ2
� x

6ð1þ yÞ þ
Z Z

X

x
1þ y

ð1þ sþ tÞu2ðs; tÞdsdt;

where X is the unit square region with the exact solution uðx; yÞ ¼ 1
ð1þxþyÞ2

.

This problem has investigated numerically by the iterated spline discrete Galerkin method in [15]. In this method, a
uniform partition is chosen on the unit square region together with n2 grids and ðnþ 1Þ2 nodes where n ¼ 1;2;4;8;16 and
32. Moreover, the resulting nonlinear algebraic systems have been solved by a Newton type method.

A comparison is made between the proposed method in this article and the results obtained in [15] which indicates that
the results by our algorithm are better than those obtained by Carutasu [15], since the proposed algorithm needs only some
discretization nodes instead of a mesh. It requires less computations to obtain the same order of errors. It is worth
mentioning that the CPU times, which are very low for the proposed algorithm. Here, they range from 1.7 upto 10 s.
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Fig. 2. Error behaviors in Example 1.
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Fig. 3. Nodes distribution for n ¼ 4;5;6 and 7 with a ¼ 0:1 in Example 3.
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Fig. 4. Error behaviors in Example 3.
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Fig. 5. Error behaviors in Example 4.

Fig. 6. Nodes distribution for n ¼ 2;3;4 and 6 with a ¼ 0:4 in Example 5.
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Example 3. As a third test problem, consider the following Hammerstein integral equation over a domain X, as a quadrangle
which is defined by the four vertices (0,0), (1/5,0), (1/5,1/7), (0,1/7) and

uðx; yÞ ¼ sin x� 45
11173009

xþ
Z Z

X
xtu3ðs; tÞdsdt;

such that uðx; yÞ ¼ sin x is the exact solution.
Considering the vertex ða1; b1Þ ¼ ð0;0Þ, gives IX;a ¼ f2;4g;m ¼ 2 and the number of nodes is achieved based on the

formula 2n2, for every n. The related numerical results have been indicated in Table 3 and the nodes distribution as well as
the error behavior for a ¼ 0:1 have been shown in Fig. 3 and Fig. 4.

Example 4. In this case, the following nonlinear integral equation has been considered

uðx; yÞ ¼ 3
2

x� 1453
415340

ln xþ
Z Z

X
s ln xeuðs;tÞdsdt;

where its domain is as the same as previous example and the exact solution is uðx; yÞ ¼ 3
2 x.

The numerical results are reported in Table 4. Here, as the parameter n increases, the absolute error decreases
significantly and in the middle case a ¼ 0:1, the best results have been obtained. The error behavior is also shown for
a ¼ 0:0001 in Fig. 5.

Example 5.

uðx; yÞ ¼ y� 9
64

ffiffiffi
x
p
þ
Z Z

X

ffiffiffi
x
p

su2ðs; tÞdsdt;

Fig. 7. Nodes distribution for n ¼ 2;3;4 and 6 with a ¼ 1 in Example 5.
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over a polygon X, which is a trapezoidal described by the vertices (0,0), (0.75,0), (1,1), (0.25,1) and the exact solution is
uðx; yÞ ¼ y.

We work with the tow different values for a. The numerical results has been presented in Table 5. In the case a ¼ 0:4, all
the nodes fall inside the trapezoidal as Fig. 6, however by choosing a ¼ 1 on the side of the rectangle enclosing trapezoidal,
some of the nodes are set outside the integration domain as Fig. 7. It is notable that, if the integrand is continuous and
computable also in the rectangle enclosing the trapezoidal, there is no significant differences between the use of the exterior
or interior discretization nodes. However, clearly the use of interior points is preferable.

Example 6 (From [1]).

uðx; yÞ ¼ x� 24737
160000

ffiffiffi
y
p þ

Z Z
X

ffiffiffi
y
p

suðs; tÞdsdt;

where X is a hexagonal region with the vertices (0,0.25), (0.1,0), (0.7,0.2), (1,0.5), (0.75,0.85) and (0.5,1). The exact solution
is uðx; yÞ ¼ x. Here, the integration region is not including the edge located in the x-axes, therefore choosing every a implies
some of the nodes set out of the hexagon. We give the numerical results and the nodes distribution for the case a ¼ 0:4 in
Table 6 and Fig. 8, respectively.

5. Conclusion

In this paper, we construct an approach based on a Gauss-like cubature to approximate solution of integral equations over
a domain as polygon with piecewise smooth linear boundary in R2. The proposed scheme is a meshless like method which
does not require the subdivision of the integration region. It needs only some discretization nodes instead of a mesh that
reduces the computational complexity of the problem. It was shown that the proposed scheme is easy to implement, com-
putationally attractive and offers a highly accurate approximate solutions over polygons.
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